Temperature dependence of hot-carrier relaxation in PbSe nanocrystals: An ab initio study

نویسندگان

  • Hua Bao
  • Bradley F. Habenicht
  • Oleg V. Prezhdo
  • Xiulin Ruan
چکیده

Temperature-dependent dynamics of phonon-assisted relaxation of hot carriers, both electrons and holes, is studied in a PbSe nanocrystal using ab initio time-domain density-functional theory. The electronic structure is first calculated, showing that the hole states are denser than the electron states. Fourier transforms of the time-resolved energy levels show that the hot carriers couple to both acoustic and optical phonons. At higher temperature, more phonon modes in the high-frequency range participate in the relaxation process due to their increased occupation number. The phonon-assisted hot-carrier relaxation time is predicted using nonadiabatic molecular dynamics, and the results clearly show a temperature-activation behavior. The complex temperature dependence is attributed to the combined effects of the phonon occupation number and the thermal expansion. Comparing the simulation results with experiments, we suggest that the multiphonon relaxation channel is efficient at high temperature, while the Auger-type process may dominate the relaxation at low temperature. This combined mechanism can explain the weak temperature dependence at low temperature and stronger temperature dependence at higher temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ab initio study of hot carriers in the first picosecond after sunlight absorption in silicon.

Hot carrier thermalization is a major source of efficiency loss in solar cells. Because of the subpicosecond time scale and complex physics involved, a microscopic characterization of hot carriers is challenging even for the simplest materials. We develop and apply an ab initio approach based on density functional theory and many-body perturbation theory to investigate hot carriers in semicondu...

متن کامل

Phonons Do Not Assist Carrier Multiplication in PbSe Quantum Dot Solids

Carrier multiplication (CM)the Coulomb scattering whereby a sufficiently energetic charge excites a valence electronis of interest for highly efficient quantum dot (QD) photovoltaics. Using time-resolved microwave conductivity experiments on 1,2ethanedithiol-linked PbSe QD solids infilled with Al2O3 or Al2O3/ZnO by atomic layer deposition, we find that CM and hot-carrier cooling are temperatu...

متن کامل

Ab initio study of hot electrons in GaAs.

Hot carrier dynamics critically impacts the performance of electronic, optoelectronic, photovoltaic, and plasmonic devices. Hot carriers lose energy over nanometer lengths and picosecond timescales and thus are challenging to study experimentally, whereas calculations of hot carrier dynamics are cumbersome and dominated by empirical approaches. In this work, we present ab initio calculations of...

متن کامل

Temperature dependence of the radiative lifetimes in Ge and Si nanocrystals.

The effect of finite temperature on the optical properties of nanostructures has been a longstanding problem for their theoretical description and its omission presents serious limits on the validity of calculated spectra and radiative lifetimes. Most ab initio calculations have been carried out neglecting temperature effects altogether, although progress has been made recently. In the present ...

متن کامل

Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals

Hot-carrier solar cells can overcome the Schottky-Queisser limit by harvesting excess energy from hot carriers. Inorganic semiconductor nanocrystals are considered prime candidates. However, hot-carrier harvesting is compromised by competitive relaxation pathways (for example, intraband Auger process and defects) that overwhelm their phonon bottlenecks. Here we show colloidal halide perovskite ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009